New Zealand Curriculum Phase 3 Year 8 Numicon is a proven approach to teaching and learning designed to give children the understanding of mathematical ideas and relationships that is essential for successful reasoning and problem-solving. The use of apparatus builds children's mental image of abstract concepts, and helps to develop their understanding of the connections between different areas of mathematics. The resources cover the key mathematical ideas for processes in mathematics: number, measures, shape, space and data that are essential foundations for further mathematical thinking.

We have correlated focus activities from *Number, Pattern and Calculating 5* and *Geometry, Measurement and Statistics 5* to the Mathematics and the New Zealand Curriculum to support teachers in their planning. These correlations will be useful whether schools choose to follow the focus activities in the order outlined in the Teaching Resource Handbook, or prefer to dip in and out of the teaching materials for different topics.

The **Numicon Approach** fulfils the curriculum to students in a knowledge-rich environment where the concepts are taught alongside the processes of being a mathematician. Where you see references to processes, these are embedded in the learning experiences every week:

- The use of representations to communicate with self and others
- Connections within maths and the daily life of the students
- Investigations
- Generalising
- Explain and justify

Included in the Numicon programme is the strong connection with the language of maths. Every week teachers are provided with a list of words and terms to use in their teaching through meaning and usage. There is an expectation that these words are used by the teachers, displayed on walls. Students are encouraged to use these words and terms with confidence. Every week an assessment goal is the 'use of the words and terms in conversation and effectively in discussion'. For example: Numicon 6 Calculating 1: Adding and subtracting negative numbers in context, and large numbers.

Terms for children to use

negative, positive, minus, plus, above/below zero, direction, size, magnitude, data, exact, approximate, rough, typical, vary, interval, difference, infinity, total, sum, bridging, partitioning, rounding, adjusting, complements, equivalence, finding the difference, taking away, unknown

Teaching Materials Featured in this Correlation:

Number, Pattern and Calculating 6 Teaching Pack ISBN 978-0-19-830490-6 Geometry, Measurement and Statistics 6 Teaching Pack ISBN 978-0-19-830491-3

2024 Curriculum Phase 3 Year 8 with Numicon 6

Abbreviations: Numicon (N) Pattern & Algebra (P&A) Numbers and the Number System, (NNS), Calculating (C), Geometry (G), Measurement (M), Statistics and Probability (*throughout all the strands*) Preparing for Formal Testing (PFT)

Number	Numicon 6
Mātauranga tau Number structure	Numbers and the Number system (NNS) 1
identify, read, write, compare, and order whole numbers and decimals using powers of 10 (e.g., 0.01 = 1 100 = 10- ²)	Exponent symbol.
	CAL 9
use prime factorisation to represent a number and to find the HCF of two numbers	P & A 1
identify prime and composite numbers up to at least 100 identify cube numbers up to at least 125	Numicon 5 P & A 3
	Numicon 6 P & A 4
	Numicon 5 P & A 4 Cube numbers
use the mathematical processes to:	
 connect with divisibility rules, simplifying fractions, area, and volume 	
 generalise conjectures about prime or composite numbers – investigate appropriate situations 	
Operations	CAL 3, 9
use rounding and estimation (including benchmarks) to predict and to check the reasonableness of calculations	
divide whole numbers (e.g., 327 ÷ 15 = 21.8 or 21 4/5)	CAL 2, 4, 9, 10
use the order of operations rule GEMA	CAL 6, 7, 13
	Preparing for formal testing 3
order, compare, add, and subtract integers	Numicon 5 NNS 5
	Numicon 6 NNS 1
use the mathematical processes to:	
 investigate situations where integers are used (e.g., temperature, altitude, profit and loss) 	
 explain and justify findings using estimation, and checking using inverse operations 	
Rational Number	NNS 2
identify, read, write, and represent fractions, decimals, and percentages	
compare, order, and convert between fractions, decimals, and percentages	NNS 2
multiply and divide numbers by powers of 10	CAL 9 Multiplying
find equivalent fractions, simplify fractions, and convert between improper fractions and mixed numbers	Numicon 5 NNS2
	Improper fractions and mixed Number

	NNS 2
	Cal 8
multiply fractions and decimals by whole numbers, and find a percentage of a whole number	CAL 2, 5, 9, 10
find a whole amount, given a simple fraction or percentage (e.g., '75% is \$45, what is the original amount?')	Will write this
add and subtract fractions with different denominators by using equivalent fractions	CAL 11, 12
add, subtract, and multiply decimals, with an emphasis on estimating before calculating	CAL 9
use proportional reasoning to share in unequal proportions (e.g., 'We have 100 stickers to share. for every 1 sticker I get, you get 3	CAL 7
stickers. How many do we each get?')	
use the mathematical processes to:	
– connect benchmarks (fractions, decimals, and percentages) and decimal operations with whole-number place values and operations	
 – connect decimals with measuring 	
- investigate HCFs and LCMs, the effect of multiplying and dividing decimals, situations where decimals are used and compared (e.g.,	
sporting events), and proportional reasoning	
 explain and justify equivalence and which fraction is larger 	
Financial Maths	Investigations 5
create and compare weekly, monthly, and yearly finance plans (e.g., saving plans, phone plans, budgets, and 'buy now, pay later'	Investigations 6
services)	
calculate percentage discounts	CAL 5
use the mathematical processes to:	
 – connect negative numbers with debt 	
 investigate practical financial decisions and statistics in the media about growth or loss. 	
Taurangi Algebra	P & A 3, 4
Generalising Number Properties	CAL 1, 2
use commutative, associative, identity, and inverse properties with expressions, including those with negative numbers	
identify and describe the properties of prime and composite numbers and explore divisibility rules	P & A 1, 4
simplify algebraic expressions involving sums, products, and differences, including by expanding single brackets expressions using the	Will have to write this
distributive property (e.g., $2(x + 3) + 1 = 2x + 6 + 1 = 2x + 7$)	
use the mathematical processes to:	P & A 1, 3, 4
- represent algebraic expressions and equations using correct vocabulary and notation (e.g., $3 \times b = 3b$)	CAL 1, 2
- connect prime and composite numbers with factors, multiples, and divisibility rules	
- generalise relationships between positive and negative integers using the commutative, associate, and distributive properties of	
numbers	
- investigate appropriate situations	
Equations and Relationships	Will have to write this
form and solve 1- or 2-step linear equations (e.g., 5s – 3 = 17)	
thind the value of an expression or formula given the values of variables	P & A 2, 3, 4
determine if a pattern is linear and, if it is, write the equation for the pattern and use the equation	P & A 2, 4
use the mathematical processes to:	
– connect to measurement formulae	
 generalise a rule for a pattern and use this to justify a prediction of a term 	

- investigate the history and use of growing patterns in tukutuku and other well-known patterns (e.g., the Fibonacci sequence)	
Algorithmic Thinking	P & A 2, 3, 4
create, test, revise, and use algorithms to identify, interpret, and explain patterns	
use the formula function of a spreadsheet to explore the effect of changing the value of a variable (e.g., hourly wages) on the results	P & A 3, 4
(i.e., cell values)	SPREADSHEET – will write this
use the mathematical processes to connect algorithms with methods for solving an operation.	CAL 13
Measurement	Measurement 2, 3, 4
Measuring	CAL 9 Multiplying
estimate and then measure length, area, volume, capacity, mass (weight), temperature, data storage, time, and angle, using	Investigating 1
appropriate metric units	Write -
	data storage,
	using appropriate metric units
select and use an appropriate base measure (e.g., metre, gram, litre) within the metric system, along with a prefix (e.g., kilo, centi) to	Numicon 5
show the size of units	Measurement 1, 2, 4, 5, 7
convert between metric measurement units, including square units	Measurement 3
	Square units
find distance given speed and time, or time given distance and speed	Measurement 1
	P & A 2
use the mathematical processes to:	
– generalise equivalent measurements (e.g., 2.05L = 2050mL)	
 – connect measurement conversions with multiplying and dividing by powers of 10 	
 investigate practical measurement situations, including reading tools with scales 	
– explain which measurement tools and units are appropriate in a given situation	
Perimeter, Area, and Volume	Measurement 2, 3
calculate the volume of triangular prisms and shapes composed of rectangular prisms	
use the mathematical processes to: – generalise the formulae for finding the area of triangles and volume of triangular prisms –	
investigate practical contexts for finding perimeter, area, and volume	
	Measurement 1
read, interpret, and use timetables and charts that present measurement information	
use the mathematical processes to: – generalise units of time using base-60 – investigate the duration of time in situations such as	
	Numinon F. Coorrectmut
Geometry	Numicon 5 Geometry 1
Shapes	Geometry 1 3
describe triangles, quadrilaterals, and other polygons in relation to their side, diagonal, and angle properties	Measurement 2
reason about unknown angles in situations involving angles at a point, angles on a straight line, vertically opposite angles, interior	Numicon 5 Geometry 1
angles of triangles, and polygons	
use the mathematical processes to:	Numicon 4 - 6
 generalise using angle rules to find unknown angles 	
 investigate diagonals and angles of polygons 	
 explain and justify classifications using flowcharts, Venn diagrams, and tables 	

Spatial Reasoning	Measurement 3
visualise and draw nets for prisms with a fixed cross section	Prism – cross section – will write this
recognise the invariant properties of 2D and 3D shapes under different transformations	Measurement 2
	Geometry 3
use the mathematical processes to:	Will write this
- investigate the meaning of kowhaiwhai patterns and other symbols from te ao Māori, and describe the use of transformations in	
these patterns	
 explain which properties of a shape will be affected by a given transformation 	
Pathways	Numicon 4
use map scales, compass points, distance, and turn to interpret and communicate positions and pathways in coordinate systems and	
grid reference systems	Numicon 5 Geometry 1
use the mathematical processes to:	
– connect map scales to proportional reasoning	
– connect angles and using a protractor with compass points	
- investigate the most efficient route between two destinations	
Tauanga Statistics	Measurement 1
Problem	
investigate, using multivariate datasets, summary, comparison, time-series, and relationship situations for paired categorical data by:	
- posing investigative questions about local community matters	
– making predictions or assertions about expected findings	
use the statistical processes to: – represent summary, comparison, relationship, and time-series investigative questions – investigate a	
broad area of interest before fine-tuning a specific investigative question	
Plan	Measurement 1
plan how to collect or source data to answer investigative questions, including	
– determining or identifying the variables needed	
– planning how to collect data for each variable (e.g., how to measure them when collecting) or finding out how provided data was	
collected – identifying the group of interest or who the data was collected from	
 building awareness of ethical practices by strategic questioning of data collection methods 	
Data	
source ready-to-use data, and provide information about the variables using provided data dictionaries	
use the statistical processes to: - represent data using a range of tools (e.g., spreadsheets, recording sheets) - investigate secondary	
data – explain errors in data and justify why they are errors	
Analysis	Measurement 1
create and describe data visualisations for summary, comparison, relationships, and time-series investigations, using multiple	P&A1
visualisations to provide different views of the data and including features and context in descriptions of distributions	
use the statistical processes to: - represent data using dot plots, bar graphs, frequency tables, time-series graphs, two-way tables or	CAL 5
graphs, scatter plots, fractions, proportions, and percentages – investigate how different data visualisations show different features of	
data and give different information – explain and justify patterns, trends, and features of data visualisations	
Conclusion	
communicate findings in context to answer an investigative question, using evidence from analysis, considering possible explanations	
for findings, and comparing findings to initial predictions or assertions and existing knowledge of the world	

use the statistical processes to: - connect statements with data visualisations to answer an investigative question - investigate	
appropriate situations – explain findings, and justify initial predictions or assertions given the findings	
Statistical Literacy	
examine the data-collection methods, data visualisations, and findings of others' statistical investigations to see if their claims are	
reasonable	
use the statistical processes to explain and justify critiques of data visualisations and collection methods.	
Tūponotanga Probability	Investigations 3
Probability Investigations	P & A 3, 4
plan and conduct probability experiments for chance-based situations, including undertaking a large number of trials using technology,	 Can explain the general relationship between an
by:	'input' (x) and an 'output' (y) for a particular
 posing investigative questions 	function (e.g. for a function described by $y = 3x$, y is
- identifying outcomes for the investigative question posed and anticipating what might happen - deciding on the number of trials, the	always three times x, x is always one third of y).
tools to be used, and the recording method – collecting and recording data	
- creating data visualisations for the distribution of observed outcomes and (year 8) for all possible outcomes for theoretical probability	
models where they exist	
 describing what these visualisations show 	
 finding the probability estimates for the different outcomes 	
 proposing possible theoretical outcomes and associated probabilities for situations where no theoretical model exists 	
 identifying similarities and differences between their findings and those of others 	
 reflecting on anticipated outcomes 	
 identifying similarities and differences between findings from probability experiments and associated theoretical probabilities, as 	
appropriate	
Critical Thinking in Probability	
agree or disagree with others' conclusions by interrogating their probability experiments	
agree with or challenge claims and identify misconceptions in relation to chance-based situations	
use the statistical processes to: - represent outcomes using systematic approaches and technology - connect probabilities with	
proportional reasoning, fractions, and percentages – investigate games of chance, patterns in possible outcomes, and theoretical and	
experimental distributions – explain and justify probability estimates and claims about chance-based situations.	